Out-of-field dose measurements in a water phantom using different radiotherapy modalities.

نویسندگان

  • R Kaderka
  • D Schardt
  • M Durante
  • T Berger
  • U Ramm
  • J Licher
  • C La Tessa
چکیده

This investigation focused on the characterization of the lateral dose fall-off following the irradiation of the target with photons, protons and carbon ions. A water phantom was irradiated with a rectangular field using photons, passively delivered protons as well as scanned protons and carbon ions. The lateral dose profile in the depth of the maximum dose was measured using an ion chamber, a diamond detector and thermoluminescence detectors TLD-600 and TLD-700. The yield of thermal neutrons was estimated for all radiation types while their complete spectrum was measured with bubble detectors during the irradiation with photons. The peripheral dose delivered by photons is significantly higher compared to both protons and carbon ions and exceeds the latter by up to two orders of magnitude at distances greater than 50 mm from the field. The comparison of passive and active delivery techniques for protons shows that, for the chosen rectangular target shape, the former has a sharper penumbra whereas the latter has a lower dose in the far-out-of-field region. When comparing scanning treatments, carbon ions present a sharper dose fall-off than protons close to the target but increasing peripheral dose with increasing incident energy. For photon irradiation, the contribution to the out-of-field dose of photoneutrons appears to be of the same order of magnitude as the scattered primary beam. Charged particles show a clear supremacy over x-rays in achieving a higher dose conformality around the target and in sparing the healthy tissue from unnecessary radiation exposure. The out-of-field dose for x-rays increases with increasing beam energy because of the production of biologically harmful neutrons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of electronic disequilibrium on the received dose by lung in small fields with photon beams: Measurements and Monte Carlo study

Background: Prediction of the absorbed dose in irradiated volume plays an important role in the outcome of radiotherapy. Application of small fields for radiotherapy of thorax makes the dose calculation process inaccurate due to the existence of electronic disequilibrium and intrinsic deficiencies in dose calculation algorithms. To study the lung absorbed dose in radiotherapy with smal...

متن کامل

A dosimetric study of deep skin electron therapy with overlapping stationary radiation fields – A case report

Background: For radiotherapy of total skin including sub-cutaneous tissue up to a depth of 3 cm on the entire left leg of an adult (Angiosarcoma skin), a complex treatment with multiple stationary electron fields was planned at our clinic. The details of dosimetry, clinical dose measurements are presented. Materials and Methods: The treatment planned with 6 overlapping 9 MeV electron fields in ...

متن کامل

Design of homogeneous and heterogeneous human equivalent thorax phantom for tissue inhomogeneity dose correction using TLD and TPS measurements

Background: The purpose of this study is to fabricate inexpensive in-house low cost homogeneous and heterogeneous human equivalent thorax phantom and assess the dose accuracy of the Treatment Planning Systems (TPS) calculated values for different lung treatment dosimetery. It is compared with Thermoluminescent Dosimeter (TLD) measurement. Materials and Methods: Homogeneous and heterogeneous tho...

متن کامل

Commissioning the First Mobile Dedicated Accelerator for Intraoperative Electron Radiotherapy in Iran

Introduction: Intraoperative radiotherapy is a radiotherapy technique in which a high single fraction of radiation dose is delivered to the patient after surgery and Concurrent with anesthesia time. The most frequent method for IORT implementation is Intraoperative electron radiotherapy (IOERT), in which, some dedicated and high dose per pulse electron accelerators are employe...

متن کامل

Megavoltage dose enhancement of gold nanoparticles for different geometric set-ups: Measurements and Monte Carlo simulation

Background: Gold nanoparticles (GNPs) have been shown as a good radiosensitizer. In combination with radiotherapy, several studies with orthovoltage X-rays have shown considerable dose enhancement effects. This paper reports the dose enhancement factor (DEF) due to GNPs in 18 megavoltage (MV) beams. Materials and Methods: Different geometrical 50-nm GNPs configurations at a concentrati...

متن کامل

Assessment of Dose Calculation Accuracy of TiGRT Treatment Planning System for Physical Wedged fields in Radiotherapy

Introduction Wedge modifiers are commonly applied in external beam radiotherapy to change the dose distribution corresponding to the body contour and to obtain a uniform dose distribution within the target volume. Since the radiation dose delivered to the target must be within ±5% of the prescribed dose, accurate dose calculation by a treatment planning system (TPS) is important. The objective ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 57 16  شماره 

صفحات  -

تاریخ انتشار 2012